Additive autocorrelation of some classes of cubic semi-bent Boolean functions
نویسندگان
چکیده
In this paper, we investigate the relation between the autocorrelation of a cubic Boolean function f ∈ Bn at a ∈ F2n and the kernel of the bilinear form associated with Daf , the derivative of f at a. Further, we apply this technique to obtain the tight upper bounds of absolute indicator and sum-of-squares indicator for avalanche characteristics of various classes of highly nonlinear non-bent cubic Boolean functions.
منابع مشابه
Autocorrelation Coefficients of Two Classes of Semi-Bent Functions
Low autocorrelation is an important prerequisite of Boolean functions when used as combiners in stream ciphers. In this paper, we investigate the autocorrelation of two classes of semi-bent functions constructed by Charpin et al.. We give all the autocorrelation coefficients of these semi-bent functions and prove that they have not correlation immune. Our results show that, although these semi-...
متن کاملBent and Semi-bent Functions via Linear Translators
The paper is dealing with two important subclasses of plateaued functions: bent and semi-bent functions. In the first part of the paper, we construct mainly bent and semi-bent functions in the Maiorana-McFarland class using Boolean functions having linear structures (linear translators) systematically. Although most of these results are rather direct applications of some recent results, using l...
متن کاملOn generalized semi-bent (and partially bent) Boolean functions
In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...
متن کاملThe Analysis of affinely Equivalent Boolean Functions∗
By Walsh transform, autocorrelation function, decomposition, derivation and modification of truth table, some new invariants are obtained. Based on invariant theory, we get two results: first a general algorithm which can be used to judge if two boolean functions are affinely equivalent and to obtain the affine equivalence relationship if they are equivalent. For example, all 8-variable homogen...
متن کاملA Note on Semi-bent Boolean Functions
We show how to construct semi-bent Boolean functions from PSaplike bent functions. We derive infinite classes of semi-bent functions in even dimension having multiple trace terms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012